Marsh, R. E. \& Schomaker, V. (1979). Inorg. Chem. 18, 2331-2336.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Rømming, C. H. \& Songstad, J. (1978). Acta Chem. Scand. Ser. A, 32, 689-699.

Rømming, C. H. \& Songstad, J. (1979). Acta Chem. Scand. Ser. A, 33, 187-197.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY system-version of January 1976, updated May 1976. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Van Nuffel, P., Lenstra, A. T. H. \& Geise, H. J. (1980). Cryst. Struct. Commun. 9, 733-738.

(3R,6R)-3-Benzyl-8-thia-1,4-diazabicyclo[4.3.0]nonane-2,5-dione, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$

By M. Van Poucke, H. J. Geise and A. T. H. Lenstra
University of Antwerp (UIA), Department of Chemistry, Universiteitsplein 1, B-2610 Wilrijk, Belgium

(Received 27 April 1982; accepted 15 July 1982)

Abstract

M_{r}=262 \cdot 3, \quad\) orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}$, $Z=8, a \stackrel{r}{=} 9.256(2), \quad b=10.154(2), \quad c=$ 27.420 (8) $\AA, D_{c}=1.352 \mathrm{Mg} \mathrm{m}^{-3} . R_{w}=0.039$ for 1546 reflections with $I>2 \cdot 5 \sigma(I)$, out of 3190 independent measurements. The benzyl group is a (pseudo-)axial substituent on the diketopiperazine ring and is folded above this ring in such a way that the overall distance is equal to the sum of the van der Waals values. The piperazine ring has a boat-like form. The molecules in the crystal occur as dimers formed through two hydrogen bridges. The geometry of the compound, also called cyclol-D-Phe-L-($\gamma \mathrm{S})$ Pro-l, is compared to cyclo(-D-Phe-L-Pro-).

Introduction. The title compound, shown in Fig. 1, contains the 2,5-diketopiperazine moiety (abbreviated DKP) and is a cyclic dipeptide composed of D phenylalanine and L - γ-thiaproline, known as trans-cyclol-D-Phe-L- $(\gamma \mathrm{S})$ Pro-l. It belongs to a group of compounds which show interesting biological and medical properties. Due to the restrictions brought about by the DKP ring in combination with the rigidity of the cyclic proline residue it is an attractive model compound in

Fig. 1. Structural formula, conformation and numbering of atoms.
which to study side chain/side chain and side chain /backbone interactions (Ramani, Sasisekharan \& Venkatesan, 1977; Anteunis, 1978). NMR spectra in $\mathrm{CD}_{3} \mathrm{OD}$ had indicated a strong preference for a rotameric state in which the benzene ring is folded above the DKP ring (Schrooten, 1981). The amount of folded conformers seemed to be coupled to the concentration and to the amount of association through hydrogen bonding resulting in either long polymeric chains or dimers. The X-ray determination is one of a series, the results of which should be useful in the interpretation of NMR spectra and chemical activity.

Experimental. 3190 independent reflections ($0 \leq \theta \leq 27^{\circ}$), room temperature, Enraf-Nonius CAD4 diffractometer, Zr -filtered Mo radiation; absorption correction omitted because of the small size of the crystal $(0.1 \times 0.2 \times 0.2 \mathrm{~mm})$ and the low absorption coefficient $\left(\mu=0.25 \mathrm{~mm}^{-1}\right)$; structure solved with MULTAN (Germain, Main \& Woolfson, 1971) and refined by a block-diagonal least-squares procedure; each reflection given a weight based on counting statistics; H atoms kept at their expected sites; their Debye-Waller temperature parameter was fixed at $5 \AA^{2}$, the value of the overall B in the Wilson plot; weighted R value converged to 0.039 . The largest shift in the last cycle was 10% of the corresponding e.s.d.; the highest maximum in the final difference Fourier map was 0.2 e \AA^{-3}. Relevant parameters* are listed in Table 1, the numbering of the atoms is given in Fig. 1.

[^0]Table 1. Positional parameters in fractions of cell edges and isotropic temperature factors $\left(\AA^{2}\right)$
The e.s.d.'s given in parentheses refer to the last significant digit. Isotropic temperature factors are calculated from anisotropic temperature parameters assuming equal volume of the 50% probability region. All anisotropic thermal parameters were physically acceptable. $B_{\text {iso }}$ was calculated according to Lipson \& Cochran (1966): $B_{\text {iso }}=8 \pi^{2}\left(U_{11}^{\circ} U_{22}^{\circ} U_{33}^{\circ}\right)^{1 / 3}$.

	Molecule (1)				Molecule (II)			
	x	y	z	B_{150}	x	y	z	B_{150}
$\mathrm{O}(1)$	0.6911 (5)	$0 \cdot 3080$ (5)	0.8337 (2)	4.79	0.5227 (5)	0.5466 (4)	0.5803 (1)	4.84
$\mathrm{O}(2)$	1.0831 (5)	0.5861 (4)	0.9323 (1)	4.72	0.8219 (5)	0.2012 (4)	0.6865 (1)	5.08
$\mathrm{N}(1)$	0.8014 (5)	0.3540 (4)	$0 \cdot 9055$ (1)	3.37	0.5761 (5)	0.4589 (4)	0.6533 (1)	3.39
C(2)	0.7709 (7)	0.3780 (5)	0.8577 (2)	4.06	0.6000 (7)	0.4793 (5)	0.6058 (2)	3.85
C(3)	0.8389 (7)	0.4986 (5)	0.8360 (2)	$3 \cdot 88$	0.7368 (1)	0.4178 (1)	0.5850 (1)	3.26
N(4)	0.9656 (5)	0.5447 (4)	0.8623 (1)	3.44	0.7869 (5)	0.3086 (4)	0.6141 (1)	4.03
C(5)	0.9833 (1)	0.5288 (1)	0.9102 (1)	3.74	0.7660 (1)	0.2923 (1)	0.6620 (1)	3.89
C(6)	0:8835 (1)	0.4384 (1)	0.9361 (1)	3.12	0.6696 (6)	0.3907 (5)	0.6884 (2)	$3 \cdot 22$
C(7)	0.9651 (7)	0.3472 (5)	0.9708 (2)	3.91	0.5670 (7)	0.3236 (5)	0.7231 (2)	3.60
S(8)	0.8387 (2)	0.2180 (2)	0.9846 (1)	4.89	0.4326 (1)	0.4456 (1)	0.7352 (1)	5.18
C(9)	0.7405 (6)	0.2392 (5)	0.9284 (2)	4.59	0.4476 (7)	0.5169 (6)	0.6760 (2)	$5 \cdot 16$
C(10)	0.7245 (7)	0.6069 (5)	0.8287 (2)	5.01	0.8550 (7)	0.5223 (5)	0.5788 (2)	4.25
C(11)	0.6569 (7)	0.6460 (5)	0.8770 (2)	4.80	0.8929 (1)	0.5930 (1)	0.6243 (1)	4.51
C(12)	0.7158 (8)	0.7450 (6)	0.9053 (2)	5.81	1.0001 (7)	0.5483 (6)	0.6556 (2)	5.94
C(13)	0.6570 (8)	0.7731 (6)	0.9510 (2)	7.08	1.0274 (1)	0.6099 (1)	0.6995 (1)	$6 \cdot 81$
C(14)	0.5392 (8)	0.7055 (7)	0.9672 (2)	7.36	0.9506 (9)	0.7161 (7)	0.7126 (2)	7.13
C(15)	0.4785 (8)	0.6071 (7)	0.9364 (2)	7.72	0.8447 (1)	0.7634 (1)	0.6840 (1)	7.11
C(16)	0.5391 (7)	0.5797 (6)	0.8946 (2)	6.21	0.8173 (7)	0.7021 (5)	0.6382 (2)	$5 \cdot 36$

Table 2. Bond lengths (\AA) and valence angles $\left({ }^{\circ}\right)$ of the two independent molecules in the title compound (columns A and B) and of cyclo(-D-Phe-L-Pro-) (column C)
E.s.d.'s in bond distances are $c a 0.01 \AA$, in valence angles $c a I^{\circ}$.

Discussion. Bond distances and valence angles are given in Table 2, torsion angles in Table 3. A comparison with cyclo(-D-phenylalanyl-L-prolyl-) (Ramani, Venkatesan, Marsh \& Hu Kung, 1976) shows that both molecules are very similar.

The thiazolidine ring is close to a half-chair (pseudo C_{2}) form with a (pseudo-)twofold axis passing through
$\mathrm{C}(9)$ and the center of $\mathrm{C}(6)-\mathrm{C}(7)$. In contrast to the conclusion of Ramani et al. (1976) the observed torsion angles (Table 3) show the pyrrolidine ring of cyclo-(-D-Phe-L-Pro-) to have an almost identical conformation.

The DKP ring has a rather shallow boat-like conformation with atoms $\mathrm{C}(3)$ and $\mathrm{C}(6)$ outside the main plane. From the Cremer \& Pople (1975) puckering coordinates (Table 3) it can be inferred that the conformation is between the true boat ${ }^{3,6} B$ and the twist form ${ }^{3} T_{1}$, using the notation proposed by Boeyens (1978). A parameter of interest to NMR spectroscopists is the angle between the $\mathrm{C}(3) \mathrm{C}(2) \mathrm{N}(1) \mathrm{C}(6)$ and $\mathrm{C}(3) \mathrm{N}(4) \mathrm{C}(5) \mathrm{C}(6)$ planes. We find 23 and $26(2)^{\circ}$ for the two molecules of cyclol-D-Phe-L- $(\gamma \mathbf{S})$ Pro-l and 18 (1) ${ }^{\circ}$ for cyclo(-d-Phe-L-Pro-). Similar values (20$22^{\circ}$) were observed for cyclol-D-Phe-L-($\gamma \mathrm{S}$) Pip-l (Van Poucke \& Lenstra, 1982a) and for cyclo(-D-Phe-L-Pip-) (Van Poucke \& Lenstra, 1982b).

Ramani et al. (1976) observed a difference in length of the two $\mathrm{C}=\mathrm{O}$ bonds in cyclo(-d-Phe-L-Pro-), which was tentatively attributed to the effects of hydrogen bonding (see also Ramani \& Venkatesan, 1973). A similar difference can be noted in the title compound. However, we are of the opinion that the effect, if real, has nothing to do with hydrogen bonding. No significant difference is observed in the dimeric cyclo-[-D-Phe-L-(γ S)Pip-], whereas cyclo(-D-Phe-L-Pip-), in which $\mathrm{N}(4)$ is methylated rendering dimerization through hydrogen bonding impossible, shows an analogous difference in $\mathrm{C}=\mathrm{O}$ lengths. The $\mathrm{N}(4) \mathrm{H} \cdots$ $\mathrm{O}(2)\left(2-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$ hydrogen bridges in both crystallographically independent molecules in the title compound are $2 \cdot 86$ (1) \AA.

Table 3. Some torsion angles and Cremer-Pople ring-puckering parameters
Columns A and B refer to the two crystallographically independent molecules in the title compound, column C refers to cyclo(-D-Phe-L-Pro-).
(a) Torsion angles $\left({ }^{\circ}\right)$. E.s.d.'s are about 2°. The sign convention of IUPAC (1974) is used. Values marked with an asterisk are where $\mathrm{S}(8)$ is replaced by C.

	DKP ring			1,3-Thiazolidine ring			
	A	B	C		A	B	C
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	21	23	16.6	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(8)$	-38	-44	-37.9*
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	-30	-28	-19.0	C(6)-C(7)-S(8)-C(9)	26	32	31.9**
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	12	5	$2 \cdot 8$	$\mathrm{C}(7)-\mathrm{S}(8)-\mathrm{C}(9)-\mathrm{N}(1)$	-6	-11	-13.5^{*}
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	15	20	14.9	S(8)-C(9)-N(1)-C(6)	-18	-14	-11.3^{*}
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)$	-23	-25	-17.1	C(9)-N(1)-C(6)-C(7)	37	38	- 31.2
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	4	4	0.7	C(9)-N(1)-C(6)-C(7)	3	38	31.2

(b) Ring-puckering parameters with e.s.d.'s calculated according to Norrestam (1981). The sequences $\mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(6)$ and $\mathrm{N}(1), \mathrm{C}(6), \mathrm{C}(7), \mathrm{S}(8), \mathrm{C}(9)$ are used.

$q_{2}(\AA)$	$0.30(1)$	$0.33(1)$	$0.23(1)$	$q_{2}(\AA)$	$0.37(1)$
$q_{3}(\AA)$	$0.03(1)$	$0.01(1)$	$0.01(1)$	$0.42(1)$	
$Q(\AA)$	$0.30(1)$	$0.33(1)$	$0.23(1)$	$Q(\AA)$	$0.37(1)$
$\varphi_{2}\left({ }^{\circ}\right)$	$133(3)$	$124(2)$	$121(2)$	$\varphi_{2}\left({ }^{\circ}\right)$	$0.37(1)$
$\theta_{2}\left(^{\circ}\right)$	$83(3)$	$88(2)$	$88(2)$	$0.42(1)$	

A pyramidal configuration around the peptide N atom in a number of dipeptides has been observed (Sletten, 1970; Pattabhi, Venkatesan \& Hall, 1973, 1974; Van Poucke \& Lenstra, 1982a,b). In the title compound, however, atom $\mathrm{N}(1)$ is insignificantly (ca $0.03 \AA$) outside the $\mathrm{C}(2) \mathrm{C}(6) \mathrm{C}(9)$ plane. Nor do we observe in the surrounding valence and torsion angles (e.g. Fig. 2a) signs of an appreciable deviation from $s p^{2}$-character.

The most prominent feature connected with the side chain/backbone interaction is the way the benzene ring is folded over the DKP ring (Fig. 1); it is characteristic for cyclic dipeptides containing tyrosyl or phenylalanyl residues. If the aromatic nucleus were to sit perfectly symmetrically over the DKP ring then, in the Newman projection around $\mathrm{C}(3)-\mathrm{C}(10)$, the line $\mathrm{C}(10)-\mathrm{C}(11)$ should bisect the projected angle $\mathrm{C}(2)-$ $\mathrm{C}(3)-\mathrm{N}(4)$. Torsion angles $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(3)-\mathrm{N}(4)$, i.e. $\chi_{\text {Phe }}^{1}$ in the IUPAC-IUB (1970) notation, of about 63° should occur. Furthermore, in the Newman projection around $\mathrm{C}(10)-\mathrm{C}(11)$ the torsion angles $\mathrm{C}($ phenyl $)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(3)$, i.e. χ^{2}, should be 90°. Inspection of Fig. 2 shows that the aromatic ring is turned slightly over towards $\mathrm{N}(1)-\mathrm{C}(2)$, but that the planes of the benzene and DKP rings are as parallel as the structure permits. The same conclusion follows from Fig. 3, which shows the distances of the center of the benzene ring to the atoms of the DKP ring. Fig. 3 also reveals that the folding is at a maximum, since all distances are close to the sum of the van der Waals radii of a benzene ring ($1.85 \AA$) and a methylene group $(2.0 \AA)$. Comparison of the results of cyclo[-D-Phe-L$(\gamma \mathrm{S})$ Pro- - , the title compound, with those of cyclo(-D-Phe-L-Pro-) by Ramani et al. (1976) and with those of cyclo[-D-Phe-L-($\gamma \mathbf{S}$)Pip-] and cyclo(-D-Phe-L-Pip-) by

Van Poucke et al. (1982a,b) shows surprisingly little variation in the 3 -benzyl-DKP moieties. Apparently the geometry of this part is, at least in the solid state, not very sensitive to trans fusion to a five- or six-membered ring, to the introduction of a $\gamma-\mathrm{S}$ atom, or to the existence of dimers.

(a)

(b)

(c)

Fig. 2. Newman projections around (a) $\mathrm{C}(6)-\mathrm{N}(1) ;(b) \mathrm{C}(10)-$ $C(3)$ and (c) $C(10)-C(11)$ for the first molecule of the title compound (top line), the second molecule (middle line) and for cyclo(-D-Phe-L-Pro-) (last line).

cycio[-D-Pne-L-(rS)Pro-]	cyclo(-D-Phe-L-Pro-)	
mol 1	mol II	
5.43	5.49	5.33
3.60	3.60	4.00
3.88	3.96	4.31
4.00	4.03	4.18
3.71	3.75	3.77
3.85	3.89	3.81
3.80	3.80	3.89

Fig. 3. Distances (\AA) from the center of the aromatic nucleus to some atoms in the molecule.

We thank Professor Dr M. Anteunis and Dr R. Schrooten (State University, Gent) for supplying the compound and for many helpful discussions. The help of Mr P. Van der Mullen at some stages in the calculations is gratefully acknowledged.

References

Anteunis, M. J. O. (1978). Bull. Soc. Chim. Belg. 87, 627-650.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
IUPAC (1974). Rules for the Nomenclature of Organic Chemistry, Section E: Stereochemistry, Recommendations 1974. Oxford: Pergamon Press.
IUPAC-IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Lipson, H. \& Cochran, W. (1966). The Determination of Crystal Structures, p. 301. London: Bell.
Norrestam, R. (1981). Acta Cryst. A37, 764-765.
Pattabhi, V., Venkatesan, K. \& Hall, S. R. (1973). Cryst. Struct. Commun. 2, 223-226.
Pattabhi, V., Venkatesan, K. \& Hall, S. R. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1722-1727.
Ramani, R., Sasisekharan, V. \& Venkatesan, K. (1977). Int. J. Pept. Protein Res. 9, 277-292.
Ramanl, R. \& Venkatesan, K. (1973). Indian J. Biochem. Biophys. 10, 297-299.
Ramani, R., Venkatesan, K., Marsh, R. E. \& Hu Kung, W. J. (1976). Acta Cryst. B32, 1051-1056.

Schrooten, R. (1981). PhD Thesis, Univ. of Gent, Belgium (in Dutch).
Sletten, E. (1970). J. Am. Chem. Soc. 92, 172-177.
Van Poucke, M. \& Lenstra, A. T. H. (1982a). Cryst. Struct. Commun. 11, 853-859.
$\mathrm{V}_{\text {an }}$ Poucke, M. \& Lenstra, A. T. H. (1982b). Bull. Soc. Chim. Belg. 91, 213-218.

Acta Cryst. (1983). C39, 230-232

4-Methyl- N -8-quinolylbenzenesulphonamide, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$. The Active Component of LIX 34

By G. Germain and J. P. Declerce
Laboratoire de Chimie-Physique et de Cristallographie, Université de Louvain, 1 Place Louis Pasteur, B 1348, Louvain-la-Neuve, Belgique

and J. M. Castresana, M. P. Elizalde and J. M. Arrieta*
Departamento de Química, Facultad de Ciencias, Universidad del Pais Vasco, Apartado 644, Bilbao, Spain

(Received 5 May 1982; accepted 12 July 1982)

Abstract

M_{r}=298.35\), triclinic, space group $P \overline{1}$, $a=6.675$ (2), $b=15.340$ (3), $c=16.065$ (4) $\AA, \alpha=$ 116.07 (2), $\beta=96.81(2), \gamma=97.92(2)^{\circ}, V=$ 1433.5 (6) $\AA^{3}, Z=4, D_{x}=1.38 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=$ 624, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu=0.23 \mathrm{~mm}^{-1}$. Final $R=0.061$ for 1277 observed reflections $[I \geq 2 \cdot 5 \sigma(I)]$. The two molecules of the asymmetric unit are almost identical. The S atom has a distorted tetrahedral coordination.

Introduction. One of the most recent commercial chelating agents is LIX 34, a quinolylsulphonamide which has been used in industrial solvent-extraction processes to recover copper(II) (Kordosky, 1976).
4-Methyl- N-8-quinolylbenzenesulphonamide, with a similar structure to the active component in LIX 34. has been synthesized (Cox \& Castresana. 1982). In this paper its crystalline structure is described.

[^1]0108-2701/83/020230-03\$01.50

Experimental. Colourless prismatic crystals grown from acetone; data collected from a crystal of approximately $0.4 \times 0.1 \times 0.1 \mathrm{~mm}$; cell parameters determined by least squares from the setting angles of 15 reflections; 3043 independent reflections measured with graphitemonochromated Mo $K \alpha$ radiation using ω scans up to $2 \theta=42^{\circ}$; one standard reflection measured every fifty reflections showed only random deviation from its mean intensity; Lorentz and polarization but not absorption corrections were applied; 1277 reflections [$I \geq 2.5 \sigma(I)$] considered as observed and included in the refinement; direct methods with MULTAN 80 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); an E map showed clearly all the non-H atoms of the molecule; refinement with SHELX 76 (Sheldrick, 1976) with anisotropic thermal parameters for the non- H atoms; H positions determined by a difference Fourier synthesis introduced into the refinement with an overall isotropic temperature factor. The final R and R_{w} were 0.061 and 0.048 respectively $\left[\omega=1 / \sigma^{2}(F)\right]$.

[^0]: * Lists of structure factors. H -atom positions and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38064 (11 pp .). Copies may be obtained through The Executive Secretary. International Union of Crystallography. 5 Abbey Square. Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

